Seminar: Matrix Groups

Lie Bracket

May 4, 2023

Definition and Proposition (Matrix Commutator): Let $A \in M_{n}(\mathbb{K})$. The Matrix Commutator is defined as:

$$
[\cdot, \cdot]: M_{n}(\mathbb{K}) \times M_{n}(\mathbb{K}) \rightarrow M_{n}(\mathbb{K}),[A, B]=A B-B A
$$

The Matrix Commutator is bilinear, skew-symmetric and satisfies the Jacobi Identity.

Definition (Lie Algebra): A Lie Algebra \mathfrak{g} is a \mathbb{K}-vector space together with the Lie Bracket: $[\cdot, \cdot]: \mathfrak{g} \times \mathfrak{g} \rightarrow \mathfrak{g}$ satisfying Bilinearity, Skew-Symmetry and the Jacobi Identity.

Theorem 3.18[2]: If $G \in G L_{n}(\mathbb{K})$ is a matrix subgroup, then $\mathfrak{g}=T_{I}(G)$ is a \mathbb{R} Lie Algebra in $M_{n}(\mathbb{K})$ with the Matrix Commutator as the Lie Bracket.

Definition and Proposition (Lie Algebra Homomorphisms): Let $\mathfrak{g}_{1}, \mathfrak{g}_{2}$ Lie Algebras of matrix groups G_{1}, G_{2}. A linear map $f: \mathfrak{g}_{1} \rightarrow \mathfrak{g}_{2}$ is a Lie Algebra Homomorphism if:

$$
f([A, B])=[f(A), f(B)], \forall A, B \in \mathfrak{g}_{1}
$$

If $f: G_{1} \rightarrow G_{2}$ is a smooth group homomorphism then the derivative at identity $d f_{I}: \mathfrak{g}_{1} \rightarrow \mathfrak{g}_{2}$ is a Lie Algebra homomorphism.

We can see: Smoothly isomorphic matrix groups have isomorphic Lie Algebras, but the inverse is not true. An example for this is $S O(3)$ and $S U(2)$. Their Lie Algebras are isomorphic but $S U(2)$ is a double cover of $S O(3)$.

In addition to the last talk on the complexification of Lie Algebras note that $s l_{2}(\mathbb{R})$ is not isomorphic to so(3) while their complexifications are isomorphic which we are now able to proof.

The Lie correspondance theorem is showing us the one-to-one connection between subgroups of $G l_{n}(\mathbb{R})$ and subalgebras of $g l_{n}(\mathbb{R})$.

The adjoint representations of Lie Group and Algebra are a way to express elements of new or unknown Lie Groups with subgroups of $G l_{n}(\mathbb{R})$ and $g l_{n}(\mathbb{R})$ which we already know.

Questions

1. We have seen that the matrix vector space over the quaternions i and $\mathrm{j}, V=$ $\operatorname{span}\{(i),(j)\}_{\mathbb{R}}$, is not a Lie Algebra with the Matrix Commutator. Define a Lie Bracket such that V becomes a real Lie Algebra.
2. Are these Lie algebras isomorphic?

$$
\begin{gathered}
\text { so }(3)=\operatorname{span}\left\{\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & -1 \\
0 & 1 & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & -1 & 0 \\
1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)\right\} \\
\operatorname{sp}(1)=\operatorname{span}\left\{\frac{1}{2}(i), \frac{1}{2}(j), \frac{1}{2}(k)\right\}
\end{gathered}
$$

3. Can the \mathbb{R}^{3} be seen as a Lie Algebra? What would be the Lie Bracket?
4. What exactly is the image of $a d: X \in \mathfrak{g} \mapsto a d_{X} \in$ \qquad ?

References

[1] Tapp, Kristopher Matrix Groups for Untergraduates. American Mathematical Society, [2016] Volume 79
[2] Baker, Andrew Matrix Groups: An Introduction to Lie Group Theory. Springer Undergraduate Mathematics Series

