Seminar: Matrix Groups

Lie Bracket

May 4, 2023

Definition and Proposition (*Matrix Commutator*): Let $A \in M_n(\mathbb{K})$. The Matrix Commutator is defined as:

 $[\cdot, \cdot]: M_n(\mathbb{K}) \times M_n(\mathbb{K}) \to M_n(\mathbb{K}), [A, B] = AB - BA$

The Matrix Commutator is bilinear, skew-symmetric and satisfies the Jacobi Identity.

Definition (*Lie Algebra*): A Lie Algebra \mathfrak{g} is a \mathbb{K} -vector space together with the Lie Bracket: $[\cdot, \cdot] : \mathfrak{g} \times \mathfrak{g} \to \mathfrak{g}$ satisfying Bilinearity, Skew-Symmetry and the Jacobi Identity.

Theorem 3.18[2]: If $G \in GL_n(\mathbb{K})$ is a matrix subgroup, then $\mathfrak{g} = T_I(G)$ is a \mathbb{R} Lie Algebra in $M_n(\mathbb{K})$ with the Matrix Commutator as the Lie Bracket.

Definition and Proposition (*Lie Algebra Homomorphisms*): Let $\mathfrak{g}_1, \mathfrak{g}_2$ Lie Algebras of matrix groups G_1, G_2 . A linear map $f : \mathfrak{g}_1 \to \mathfrak{g}_2$ is a Lie Algebra Homomorphism if:

$$f([A, B]) = [f(A), f(B)], \forall A, B \in \mathfrak{g}_1$$

If $f : G_1 \to G_2$ is a smooth group homomorphism then the derivative at identity $df_I : \mathfrak{g}_1 \to \mathfrak{g}_2$ is a Lie Algebra homomorphism.

We can see: Smoothly isomorphic matrix groups have isomorphic Lie Algebras, but the inverse is not true. An example for this is SO(3) and SU(2). Their Lie Algebras are isomorphic but SU(2) is a double cover of SO(3).

In addition to the last talk on the complexification of Lie Algebras note that $sl_2(\mathbb{R})$ is not isomorphic to so(3) while their complexifications are isomorphic which we are now able to proof.

The *Lie correspondance theorem* is showing us the one-to-one connection between subgroups of $Gl_n(\mathbb{R})$ and subalgebras of $gl_n(\mathbb{R})$.

The adjoint representations of Lie Group and Algebra are a way to express elements of new or unknown Lie Groups with subgroups of $Gl_n(\mathbb{R})$ and $gl_n(\mathbb{R})$ which we already know.

Questions

- 1. We have seen that the matrix vector space over the quaternions i and j, $V = span\{(i), (j)\}_{\mathbb{R}}$, is not a Lie Algebra with the Matrix Commutator. Define a Lie Bracket such that V becomes a real Lie Algebra.
- 2. Are these Lie algebras isomorphic?

$$so(3) = span\left\{ \begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & -1 \\ 0 & 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix} \right\}$$
$$sp(1) = span\left\{ \frac{1}{2}(i), \frac{1}{2}(j), \frac{1}{2}(k) \right\}$$

- 3. Can the \mathbb{R}^3 be seen as a Lie Algebra? What would be the Lie Bracket?
- 4. What exactly is the image of $ad: X \in \mathfrak{g} \mapsto ad_X \in \underline{\qquad}$?

References

- Tapp, Kristopher Matrix Groups for Untergraduates. American Mathematical Society, [2016] Volume 79
- [2] Baker, Andrew Matrix Groups: An Introduction to Lie Group Theory. Springer Undergraduate Mathematics Series